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Abstract.   This paper discusses the implementation of a distributed ge-
ometry for parallel mesh generation, involving dynamic load-balancing 
and hence dynamic re-partitioning of the geometry.  A novel approach is 
described for improving the efficiency of the distributed geometry inter-
face when dealing with irregular shaped mesh partitions. 

1 Introduction 

Whilst efficient parallel flow solvers are now commonly available, the 
parallelization of the mesh generation process still represents a considera-
ble challenge [1].  In industrial applications, it is often the mesh generation 
task which therefore limits the scale of the problem that can be simulated. 

Attempts to perform mesh generation in parallel generally decompose 
the original problem into N smaller problems which can then be meshed 
concurrently using P processors or threads [2].  Parallel mesh generation 
strategies can be categorized based on the degree of coupling between sub-
problems, ranging from completely decoupled [3], to tightly coupled [4]. 

Decoupled, or loosely coupled techniques are attractive in terms of sim-
plicity, however they present problems in terms of load-balancing, mesh 
quality at domain boundaries, and the ability to generate contiguous vis-
cous layers throughout the volume.  Conversely, tightly coupled tech-
niques are more complicated to implement, but enable dynamic load-
balancing.  However, the use of dynamic load-balancing presents problems 
for the interface to the geometry.  Storing a copy of the geometry on each 
processor is one solution, but presents a serious limitation on the size of 
geometry which can be meshed.  The focus of this paper, therefore, is on 
the implementation of a distributed geometry interface with support for 
dynamic load-balancing during parallel mesh generation. 
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2 Parallel Mesh Generation Process 

The parallel hexahedral-dominant mesh generator, iconHexMesh, is part of 
the iconCFD process, an open source-based CFD suite developed by 
ICON, using OpenFOAM® technology.  The mesh generation process in 
iconHexMesh is illustrated in Fig. 1, and involves refinement of the initial 
block mesh based on prescribed refinement levels on geometry surfaces 
and feature lines, creation of a conformal mesh by snapping to geometry 
surfaces, and insertion of a layer mesh to capture viscous boundary layers.  
At various points during the mesh generation, the mesh is dynamically re-
partitioned to achieve good load-balancing. 

 

(a)  (b)  

Fig. 1. Mesh generation process in iconHexMesh: (a) input STL geometry and ini-
tial block mesh, (b) final mesh. 

3 Distributed Geometry Implementation 

When performing mesh generation in parallel with a distributed geometry, 
the geometric surfaces must be re-distributed each time the mesh is re-
partitioned, so that each mesh partition has access to the local portion of 
the geometry.  Feature lines, which consist of a series of contiguous edge 
segments that represent geometric discontinuities, surface intersections or 
boundaries of user-specified regions, must also be re-distributed when the 
mesh is re-balanced.   

For the re-distribution of geometry surfaces, OpenFOAM® provides the 
class distributedTriSurfaceMesh, which extends the class triSurfaceMesh 
normally used to store STL geometry by adding a method to distribute the 
surface mesh.  This is accomplished by exchanging a series of bounding 
boxes enclosing each of the mesh partitions.  Each distributed surface then 
checks whether any triangles overlap these bounding boxes, and therefore 
need to be communicated to another processor.  Any new triangles re-
ceived from other processors are then merged with the existing surface 
mesh, removing any duplicate points and triangles in the process. 
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However, the redistribution of the geometry is only one aspect of a dis-
tributed geometry interface.  When the geometry is partitioned, geometric 
queries have to be handled differently, as illustrated in Fig. 2 for the pro-
cess of finding the intersection of a line with the geometry.   
  

 
 

Fig. 2. Distributed geometry implementation of line intersection checks 

As a result, it was necessary to modify several parts of the meshing algo-
rithm to avoid single point or edge geometry queries, and replace these 
with queries for groups of points or line segments which could then be per-
formed synchronously across all processors. 

With the modifications described above, it is now possible to generate 
meshes on models of much greater complexity, as demonstrated by Fig. 3, 
which shows a detail of the 20M cell mesh generated in 20 minutes on 128 
processors for a civil aircraft model comprising of a 1.8GB STL file. 

 

  
Fig. 3. Geometry (left) and detail of mesh (right) generated on civil aircraft 
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4 Support for Different Decomposition Methods 

The mesh generator iconHexMesh supports various decomposition 
methods: simple or hierarchical geometric decomposition methods in 
which the domain is split by planar cuts in the x, y and z directions, or 
ptscotch, which uses the PT-Scotch graph partitioning library.  Although 
the hierarchical method is most commonly used during parallel mesh gen-
eration, the ptscotch method is attractive in terms of providing good load-
balancing whilst minimizing communication boundaries. 

However, when moving to ptscotch, the speed of the refinement and 
snapping stages were reduced, because of a reduction in the locality of the 
geometry queries.  The bounding boxes associated with each partition 
overlap more than those resulting from hierarchical decomposition, caus-
ing an increase in the exchange of data during re-distribution, and in the 
number of non-local geometry queries. 

In order to address the problems associated with irregular shaped mesh 
partitions, the distributed geometry interface provides the ability to de-
scribe mesh partitions using multiple bounding boxes.  The problem be-
comes one of determining a minimal set of bounding boxes which will best 
describe the shape of the mesh partition on each processor. 

This problem was solved by creating an octree for the boundary of the 
mesh partition, and extracting a list of bounding boxes which correspond 
to the octree at a specified depth.  This results in a set of bounding boxes 
which match the shape of the mesh partition as closely as possible, subject 
to a user-defined level, as illustrated in Fig. 4.  Using multiple bounding 
boxes to approximate the mesh partitions results in a decrease in the num-
ber of triangles exchanged during geometry re-distribution, and improved 
localization of the geometry queries. 

 

 
level = 1 

 
level = 2 

 
level = 3 

   

Fig. 4. Multiple bounding boxes used to approximate a mesh partition 

 



Efficient Distributed Geometry for Parallel Mesh Generation      5 

5 Future Work 

Whilst the use of multiple bounding boxes to approximate a mesh partition 
offers performance enhancements, it could be further improved by com-
municating the structure of the octree of the mesh boundary to the speci-
fied level, instead of an explicit list of bounding boxes.  The octree for 
each partition could then be re-constructed on remote processors from the 
root bounding box and a series of markers indicating whether each child 
node should be included, excluded, or further sub-divided.  This would 
then enable a more efficient octree search to be performed to check for 
overlapping parts of the geometry. 

6 Conclusion 

A parallel mesh generation tool has been modified to support a distributed 
geometry with dynamic load-balancing, enabling generation of meshes for 
extremely large geometry assemblies. 

A novel approach to improving the efficiency of the distributed geome-
try interface has been implemented for dealing with irregular shaped mesh 
partitions.  Efforts are underway to further improve the efficiency of this 
approach, and enable better performance scalability. 
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